
COLORED DIRECTED ACYCLIC GRAPHS FOR MULTI-CLASS

ATTRIBUTION NETWORKS

M. STEPHENSON, M. ZARGHAM

Abstract. This research note discusses the creation of a Directed Acyclic Memex, a
graph theoretic tool helping to enable one of the foundational concepts of the internet. The
practice of research citing earlier work is well represented by a directed graph structure
price1965networks, and we suggest that a natural addition to this process is the ability to
“color” paths, groups, edges, or nodes. This allows for individuals to create “associative
trails” of upstream occurrences, and to easily classify them along relevant dimensions.
Citations of ideas are a natural use case, but the concept is quite general and can be used
for accounting, collaboration, and distribution.

1. Introduction

The person who oversaw landmark scientific projects like the Manhattan Project, the
National Science Foundation (NSF), and NASA is the same person widely credited with
inspiring the internet. This is not a coincidence. This figure, Vannevar Bush, sought to
fund free and open research because he believed that science and progress resulted from
“the free play of free intellects, working on subjects of their own choice, in the manner
dictated by their curiosity for exploration of the unknown”. But so too did he think that
computers would offer an incredible tool for helping aid this exploration and play– he
wrote a 1945 article called “As We May Think” that internet pioneers like Ted Nelson and
Douglas Engelbart have cited as a formative influence on internet.

Writing well before the computer age had taken hold, Bush believed that even then
published knowledge was already “far beyond” our ability to make use of it. He proposed
the Memex, a tool which would enable a more efficient organization of human thought.
Users could navigate and share information by sharing “associative trails”—paths through
articles which inspired and validated certain ideas. An important project inspired the
Memex, Ted Nelson’s Xanadu project, was ambitious in scope but was never fully realized.
The vision of the internet found in the Memex and the Xanadu Project have thus far
foundered on incentive and design problems1, but recent innovations may make such a
vision newly possible. ++ references from abstract

Date: Aug 29, 2020.
1As investor Peter Thiel notes, “Their technology probably would have worked at scale, but it could have

worked only at scale”. thiel2014zero Moreover, Nelson struggled “to balance openness with compensation
and recognition for himself and the other early pioneers”, quoraxanadu which are the sorts of problems
endemic to all open innovation. nelson1959simple, stephensonplanck

1

2 M. STEPHENSON, M. ZARGHAM

This paper proposes a formalism: ”Colored Directed Acyclic Graphs”, and motivates
them specifically for a broad class of problems we call ”Multi-class attribution networks”.
We suggest that these classes, along with other complementary incentive mechanisms, can
help to realize a very natural structure of information across networks—a move toward a
“Directed Acyclic Memex” (DAM), one of the original visions of computing technologies
as enhancements of thought.

Colored Directed Acyclic Graph Part of intro (theory) Nodes and edges are basic ab-
stractions of graph theory. Edges exist as connections among nodes, in a broadly analogous
way to how friendships exist as connections among people. You can mentally build the
components of such a graph by thinking of individuals as nodes and dispositions of friend-
ship as edges—people are dots, and friendships are lines connecting them. Friendship is
usually reciprocated so the edges connecting two reciprocal friends will have arrows at each
end. But if someone thinks of you as a friend and you, perhaps, think of them as something
else (an acquaintance, perhaps) the edge between you point only to you, a one-way edge.
Nodes connected exclusively by one-way edges create a directed graph, and the fact that
each individual is unique and has unique edges, means that the graph is “acyclic” and
doesn’t repeat as you traverse it. This is a Directed Acyclic Graph (DAG).

A DAG of friendships would be a truly dystopian vision— a topography of vast unre-
quited social longing. But DAGs are a beautiful fit for attribution, because it’s natural to
only attribute things which already exist. Whatever underpins the second law of thermo-
dynamics and the arrow of time, it’s fairly natural to attribute as causes only those things
which temporally preceded the caused. Thus the edges of our attribution DAG only point
upstream, to earlier ideas or events. This appropriateness of a DAG structure for graphing
scientific citations was recognized by an early historian of science price1965networks.

short paragraph outlineing the technical content

2. Notation and Definitions

In this section, the formal notation for graph theoretic, cryptographic, and data modeling
concepts are presented as the foundation on which the practical construct is built. Directed
Acyclic Graphs (DAGs), graph colorings, meta-data schemas, Hash Functions, content-
addressibility, partial orderings are covered, directed root trees ans associated attribution
metrics are covered.

2.1. Colored Directed Acyclic Graph. Let G = (V, E) denote an directed graph with n
vertices, m edges, and no self-loops. We denote by V (G) = {v1, . . . , vn} the set of vertices
and by E (G) ⊆ V (G)× V (G) the set of directed edges of G. If (i, j) ∈ E (G) we call vertex
i child of vertex j parent, with the child-parent link further denoted i→ j.

The directed graph G is acyclic if there exists no sequence of edges

[ek = (ik, jk) ∈ E] for k = 1, · · ·K
such that

i1 → j1 = i2 → j2 = i3 → · · · → jK = i1.

COLORED DIRECTED ACYCLIC GRAPHS FOR MULTI-CLASS ATTRIBUTION NETWORKS 3

Figure 1. Spaces and Operators used to map the colored DAG to Schemas
and Data

The directed graph G is colored if there is a mapping C : V → C where C denotes a finite set
of classes of vertices. The traditional notion of a graph coloring seeks to assign the mapping
c(V) such that c(i) 6= c(j) for any edge e = (i, j) ∈ E . The following work deviates from
this classical assumption, instead allowing the coloring to serve as an indication of intrinsic
heterogeneity of the vertices. There is therefore a well defined set of edge classes C2 = C×C
for which we extent the use of the operator C : E → C2. For any e = (i, j) ∈ E , the edge
class is (c(i), c(j)) ∈ C2 and the order matters. Due to the departure from the strict coloring
definition there exists edges of type (c, c) ∈ C2.

2.2. Coloring and Meta-Data Schemas. Vertices represent abstract data about events
or objects; this data has no assumed structure and is simply denoted d(i) ∈ D for any
i ∈ V. Without loss of generality, the set D is any data that can be expressed as a length
l sequence of bits {0, 1}l. In addition to the raw data d(i) associated with vertex i, there
is a meta-data schema s according to the color of c(i).

For each c ∈ C define a meta-data schema s(c) ∈ S; without loss of generality the schema
set S denotes all possible logical data models Alan Chmura, J. Mark Heumann (2005). To
ensure completeness of this abstraction, define color c0 ∈ C as the class of vertex with null
schema s(c0) = ∅. Any vertex i such that c(i) = c0 is simply a file stored with no structural
meta-data declared2.

The Colored DAG construction included the set of edge classes C2. It is prudent to extent
our meta-data definition to include schema assignments for edges. In order to handle the

2The authors propose the convention that the null class c0 be associated with the color black to denote
opacity as compared to colors which provide some measure of information about the associated data object’s
contents

4 M. STEPHENSON, M. ZARGHAM

Figure 2. Spaces and Operators used to map the colored DAG to unique
Content Addresses

general case, it is not assumed that there is a one-to-one mapping between elements of
the set C2 and the edge coloring. Instead, denote the set of edge classes to L which is a
finite set representing the domain of a mapping L : E → L. In order to limit complexity,
addition structure may be imposed such that for any edge class C ∈ C2 there is a subset
of LC ⊆ L which is non-empty because necessarily contains the class C0 associated with
the null schema. Thus, for any edge e = (i, j) ∈ E there is an edge color l(e) ∈ L ⊆ LCe

where Ce = (c(i), c(j)) ⊆ C2. The edge color uniquely defines the edge schema according
to the mapping S : L → S. Metadata schemas are a generalized space such that the range
of the mappings s taking vertex colors to schemas and the mapping S taking edge colors
to schemas are the same.

To complete the formal function spaces, return to the notion d(i) ∈ D and observe that
since D has no assumptions about structure it is suitable to define edge dimensional data
D(e) ∈ D as well. The data can be described as having a schema in S irrespective of
whether any addition meta-data is defined because the null schema is a member of S.
Naturally, any d ∈ D with non-null schema is expected to include a header containing its
meta-data including its vertex or edge class. Therefore, the construct can be considered
strongly typed by introducing an additional mapping T : D → S. The operator T is
presented with a dashed line in Figure ?? as its inclusion is optional.

COLORED DIRECTED ACYCLIC GRAPHS FOR MULTI-CLASS ATTRIBUTION NETWORKS 5

Figure 3. Spaces and Operators used to query data from vertices and
edges in the colored DAG.

2.3. Content-Addressability, Hash Functions and Edge Data. The proposed Col-
ored Directed Acyclic Graph is made up of vertices i ∈ V and edges e = E . Let us define
the address of any peice of data to be a cryptographic hash of the data, h : D → A where
A is the range of the chosen hash function h. Applying the hash function h to the d(i) for
any vertex provides the address a(i) = h (d(i)) of vertex i. In the proposed formalism the
directed edges relating vertices to parent vertices are part of the vertex meta data.

A vertex is part of the Colored Directed Acyclic Graph if it has at least one edge.
Without loss of generality, continue with the assumption that the graph G is a weakly
connected digraph. Given this assumption every vertex in V must have at least one edge.
The direction of the digraph is considered to flow from children to parents, therefore,
vertices i with no parents are considered leaves and must have at least one child vertex in
order to be connected.

Consider any vertex i that is not a leaf, that has color ci ∈ C with schema s(ci) which
includes a mapping to its parent vertices, p : V → N where N = ℘(V) is the set of
all possible neighborhoods, denoted by powerset of vertices ℘(V). Note that this simply
recovers the fact that a vertex may be connected to any other vertex: p(i) = [1, . . . ,K] = Ni
where Ni ∈ N is a neighborhood (or parent set). That is to say: k ∈ p(i) if and only if
(i, k) ∈ E . The data of node i then necessarily contains the data associated with each of
its edges D(e) for each e.

It is prudent define the data d(i) = {d0(i), de1(i), . . . , deK (i)} where d0(i) is the data
for the vertex i itself and d(i,k)(i) = (a(k), D(i, k)) for all vertices k with addresses a(k) =
h(d(k)) which are declared parents of i at the time i created. The edge classes and associ-
ated schemas for edges are used to ensure the data D(i, k) collected from within d(i) are
defined on an edge by edge basis according to the formalisms in section ??.

6 M. STEPHENSON, M. ZARGHAM

2.4. Reading Data From Content Networks. So far only the mappings for storing
data have been defined. In order to effectively use a content network one must also define
the functions that read the stored data. The basic query operation for the network is
denote r : A → D. The mapping takes the hash representing the address of the data and
returns the data itself. This top level query operation returns and object that without
further qualification has no implied structure. However, by following a coloring scheme
that includes a metadata header with information about the data’s schema, it is possible
to make the data contained a more generally useful domain for other operators.

Consider, three addition types of read operations for any particular object d ∈ D, read
structure rs : D → S, read vertex rv : D → Dv and re : D → De. Note that it may be
necessary to apply rs in order to get the necessary structural information about d ∈ D
required to actually apply rv and that furthermore, rv returns d ∈ Dv which will include
the neighborhood or parent set information required to identify and query edges using re.

Therefore, querying data from the network may require a sequence of calls, the imposed
structure guarantees that all data about vertices and edges is recoverable from a nested
data using well defined content hash addresses; that is any data object d ∈ Dv ∪ De ⊆ D
has a content defined address h(d). Note that the mapping T : D → S proposed in section
?? used to impose typing on data is equivalent to rs if it is included. If strong typing is not
implemented then rs still exists but its range is any data S = D rather than some more
narrowly defined set of supported predefined structures or schemas.

2.5. Partial Orderings and Directed Root Trees. In sections ??, ?? and ?? the defini-
tions for a network of content with color based classification and parent child relationships
have been established. In this section, the network structure is exploited to define useful
sub-graphs, specifically directed rooted trees with proscribed selection rules based on class
data for vertices and edges.

First observe that there is a partial ordering over all vertices: let i < j if and only if
there exists a directed path

i→ k1 → k2 → · · · → j.

Therefore, for any vertex i there is a set of ancestors {j ∈ V | j > i}. This set can be
constructed iteratively by backpropogating through the local parent sets p(k) = Nk for all
vertices k starting with the immediate parent set p(i) = Ni and continuing until only leaf
vertices remain. The resulting network is a directed root tree with edges pointed toward
the root vertex i.

An important property of the vertex coloring c(i) and edge coloring L(e) classes is that
these directed root trees may be further restricted based on the class of data they contain
or the nature of the link from parent to child. Define a colored directed root tree to be

Gtree = {Vtree, Etree} ⊂ G
such that Vtree = {i ∈ V | c(i) ∈ Ctree} and Etree = {e = (i, j) ∈ V |L(i, j) ∈ Ltree}.

2.6. Attribution Metrics Over Colored Trees. By including only vertex and edges
whose classes contain structure it is possible to apply attribution algorithms over a well
defined domain. Furthermore, it is even possible to dynamically define the backpropogation

COLORED DIRECTED ACYCLIC GRAPHS FOR MULTI-CLASS ATTRIBUTION NETWORKS 7

Figure 4. Simple Example of a Backpropogation F (x) with self-weight θ = 0.7

algorithm in terms of the data discovered in the nodes, i.e. explore backwards through
vertices of class c1, c2, c3 ∈ C, stop at vertices of class c4 ∈ C and apply some function f(d)
that is well defined for data d with structure s(c4).

Let us define a general class of attribution metrics

F : R+ −→ R+ × G

which can take value x ∈ R+ assigned to any vertex i ∈ V in the the colored directed
acyclic graph, using any arbitrary backpropogation rule B : V → Gtree ⊆ G and assign a
value xk ∈ R+ to each vertex k ∈ Vtree and to each edge e ∈ Etree to the contribution of
the discovered ancestors according to the vertex and edge data along the path.

Further observe that while it may or may not be a desirable property, it is strictly feasible
to implement algorithms which are conservative in one or more dimensions by allocating
a percentage of remaining attribution as one backpropogates. Consider an algorithm that

attributes a θ ∈ (0, 1) share to each vertex k traversed and (1−θ)
|Nk| to each parent vertex until

the leaves are reached or the remaining value falls below some threshold ε at which point
all remaining value is attributed. Under algorithms of this type, it is guaranteed that

x =
∑
i∈V

Fi(x).

This is merely an example meant to show that the colored directed acyclic graph with
defined color based classes of data can serve as the domain for a large class of algorithms
that suite the needs of the algorithm designer. This concept will be further explored in
more concrete cases.

8 M. STEPHENSON, M. ZARGHAM

Figure 5. Needs to be reworked slightly match text

3. Multiclass Attribution Networks

In this section, a multiclass attribution network is constructed and protocols for storing
and querying data from the network are defined. Consider a multiclass attribution network
with vertex classes C = {c1, c2, c3} and edge classes

C2 ⊆ {(c1, c1), (c1, c2), (c1, c3), (c2, c1), (c2, c2), . . . , (c3, c3)}.

For simplicity, let L = C2 indicating the case that there is only one type of link class for
each vertex class pair. Furthermore, assume that for each class c the there is a metadata

COLORED DIRECTED ACYCLIC GRAPHS FOR MULTI-CLASS ATTRIBUTION NETWORKS 9

header after the following fashion:

< address >: {′Title′ :< str >,
′Account′ :< address >,
′Software′ :< address >,
′Datetime′ :< timestamp >,
′Class′ :< address >,
′Parents′ : {< address >:< struct >},
′Data′ :< struct >}.

Let c1 =′ Account′ denote identities within the network, c2 =′ Software′ be vertices
containing data which is code, c3 =′ Other′ be any other files stored in the network.
Account and Software appear as metadata fields because every object in the network must
be written by some account using some software regardless of which class the object itself
is.

3.1. Account Class. For this network accounts will be important but simplest objects
defined by a public key, private key pair with its metadata containing its Class, the string
’Account’ and hash of the software used to created the account proven to be stored at
the address matching its hash. In the event that an account is created by a previously
unregistered piece of code, a new code object will be stored as a subroutine.

3.2. Software Class. Software may also be a simple object but its metadata will also al-
low for explicit declarations of parents of Classes ’Account’, ’Software’ or ’Other’. Declaring
an account as a parent is different from being the account which signed the transaction to
the network; a parent ’Account’ is a citation of some kind which may represent author-
ship, sponsorship or another relationship depending on the edge metadata supplied in the
’Parents’ Structure. Likewise, a parent ’Software’ may be a dependency, or forked version
of software already stored in the network.

3.3. Class Class. The ’Class’ class is an object encoding the metadata for a class. Its
metadata will also allow for explicit declarations of parents of Classes ’Account’, ’Software’
or ’Other’. Declaring Class as a parent is only well defined for other ’Class’ objects and
implies inheritance; a parent ’Account’ of a ’Class’ is a citation of some kind which may
represent authorship, sponsorship or another relationship depending on the edge metadata
supplied in the ’Parents’ Structure. It is important for it to be possible to create new
classes both to support new use cases as well as to extend or evolve existing use cases. The
class ’Class’ along with ’Accounts’ and ’Software’ provide the backbone of the attribution
network with explicit dependencies on whereas the parents are implicit assignments of
credit to other pre-existing objects in the network.

10 M. STEPHENSON, M. ZARGHAM

Let Class A be Authors

Let Class B be Books

Elise

Meg

Jim

Pat

Stories I

Stories II Adventures

Fairy Tails

Epic Poems

Book

Author

Author a

Book b

Author a wrote Book b

Book b1

Book

Book b2 references Book b1

Node Types

Edge Types

Note that the lack of (A,A) and (B,A) links make this hyper simplified case where all
discovery is Book centric but this degeneracy is a product of the simplification

Figure 6. Z’s Notes super simple example of made of data

3.4. Other Class. The class ’Other’ is a placeholder class which can be used to contain
any number of richer classes of data with well defined metadata headers. For the purpose
of this example network all addition classes lumped into other have metadata including
’Account’ and ’Software’ which must be references to existing objects or those objects
will be generated and stored as part of the process of creating the new object of class
’Other’. Additionally, it is assumed that there may be a wide variety of parent relationships
associated with the ’Other’ class but the proposed network is sufficiently general for the
implementing team to define data models as needed over a wide array of additional classes.

3.5. Pen Names and Sybil Attacks. Describe the Books and Authors example where
Authors fill the role of Account and for simplicity we neglect the software class. The
general applicability of the framework to the structure of real life questions of attribution is
demonstrated, including the implications of accounts themselves not having parents. While
it is possible to generate many accounts and thus lack a single identity in this framework,

COLORED DIRECTED ACYCLIC GRAPHS FOR MULTI-CLASS ATTRIBUTION NETWORKS 11

one would argue that attribution in such a network would be a reward not a cost and
fragmenting that attribution across multiple identities would provide no additional utility
in most cases. The book example does however bring to mind the case of pen names, so
it is plausible that an author might choose to have different accounts for personal reasons.
Due to the overall flexibility of this network as a domain over which incentive algorithms
may be defined, the decision regarding counting attribution for any particular algorithm
determine the impact of Sybil attacks on that algorithms output.

4. Application: Knowledge, Science, and Open Innovation

Introducing a notion of incentives and intent can help demonstrate a powerful use case
of these multi-class attribution networks: a Directed Acyclic Memex (DAM.) Consider the
example of Planck, an incentive system for encouraging open innovation and knowledge
sharing. In this system, ideas are encoded as Glyphs— non-fungible digital blockchain
objects which, for present purposes, can be thought of as vertices in a DAG. A new Author’s
Glyph, called a GlyphA contains a content address, some parent addresses, and at least
one unique value (a uint256, for instance.) A GlyphA may cite other Glyphs as “parent
addresses”, so for simplicity we’ll refer to these addresses as Glyphcited. When a prize is
awarded GlyphA, some proportion of the prize can go to the Glyphcited. Each of those
Glyphcited, as they get their proportion of the prize, may also allocate some proportion to
the Glyphs they cite.

You can visualize this as an irrigation system, with prize compensation flowing initially
to the GlyphA which, like a Dam, has “gates” allocating flow to specific Glyphscited. Each
Glyphcited is a catchment for some funds, and also has gates of its own, allocating funds to
the Glyphcited. Eventually, the water fails to fill a catchment and the flow for that prize
stops. Figure 6 presents the visual analogy comparing Planck’s use of a DAM to an actual
Dam.

The awarded GlyphA acts as both a catchment for some amount of funding and a pre-set
system of sluices which direct the remaining proportion.

4.1. Designing Incentives. The application of any abstract model to a human system
presents a special problem, popularly known in economics as the “Lucas Critique”. The
Lucas Critique, loosely speaking, says that any model of the human world is going to exist in
the human world, which may then react to the model.3 We will demonstrate the drawbacks
to a naive application of such a DAG in light of plausible incentive considerations: consider
a revenue share such that πi(GlyphA) = θR, with πi the revenue accruing to agent i due
to their ownership of the GlyphA, with R as some material reward, and 0 < θ < 1.
Assume that the remainder 1 − θ is shared with a Glyphcited according to some function
f : Dm → Rm+ .

The addition of “high-powered incentives” in a game is well-known to change the be-
havior for both contract theoretic and behavioral reasons. Thus, while existing scientific
citations may be very well-modeled with a DAG, any imposed set of incentives may change

3Threat heuristics like “Sybil Attacks” are guided by a similar logic.

12 M. STEPHENSON, M. ZARGHAM

the interactions. The incentive problem already appears in the simple functions above:
if i gets to choose θ, their rational choice is θ = 1. If another agent can choose θ, they
should form a coalition and choose a θ that maximizes their share of R (presumably paid
via side-payments).

However, suppose that a norm in which, say, θ = .5 is established and effectively main-
tained to prevent such a max θ attack. Turning attention, then, to the sharing function
f , we can suppose a reasonable functional form to be the Shapley Value, the model that
Google AdWords bases its value attribution engine on. The functional form is as follows:

φi(v) =
∑
S⊂N
i∈S

(| S | −1)!(n− | S |)!
n!

[v(S)− v(S − i)]

Where S is a coalition, n is the number of player in set N and the function defines weighted
payoff vectors according to the marginal contribution of each player i. This defines a
structure by which R could paid proportionally to the weighted marginal contribution of
each member of the coalition, phi.

However, obtaining a truthful report of marginal value of v(·) is difficult—with respect
to attribution, for instance, each player has the incentive to maximize their claim and
over-report their marginal contribution. Similarly to the “max θ” attack, a norm in which
all citations are treated equally may be preferred. There’s a further attack, then, in which
authors cite only themselves so that the funds are still distributed back to them despite
setting θ = .5 and distributing citations equally. Ultimately, attacks like this represent
a scope condition under which the model’s assumptions apply. Fortunately, a helpful
feature is available to us via the multi-class nature of the proposed DAM itself: class-based
identification decreases the cognitive costs in detecting attacks like a “max θ” or the “self-
citation” attack. Author classes make it more straightforward to detect self-citation as well
simple collusion.

Moreover, sharing rules could be put in place which countervail such incentives—the
rule could be as simple as an equal split, but algorithms could be created that weight by
a curation measure, an eigenvector weight, a means test, etc. I’ll here consider a few with
brief descriptions of each

• Off-class Degree centrality: restricting class attention to authorship, such an al-
gorithm provides weights which encourage further sharing and papers which cite
widely.
• Betweenness centrality: particularly in theoretical cases, such a measure could serve

as a proxy for interdisciplinarity.
• Meta-analysis can be used to define new classes, as can citations themselves. Some-

one looking to fund several Glyphs might discover new research cites many of those
glyphs.

5. Conclusion

As these incentive design problems are solved, the prospect for an effective model of
contribution to streams of thought becomes increasingly possible. The original proposal for

COLORED DIRECTED ACYCLIC GRAPHS FOR MULTI-CLASS ATTRIBUTION NETWORKS 13

a Memex was an index of associative trails of thought, “a means of turning an information
explosion into a knowledge explosion.” It’s a grand vision, and we believe that DAGs
are the proper structure to build such a project out for open science, knowledge, and
innovation.

